Parallelizing the Camellia and SMS4 Block Ciphers - Extended version
نویسندگان
چکیده
The n-cell GF-NLFSR (Generalized Feistel-NonLinear Feedback Shift Register) structure [8] is a generalized unbalanced Feistel network that can be considered as a generalization of the outer function FO of the KASUMI block cipher. An advantage of this cipher over other n-cell generalized Feistel networks, e.g. SMS4 [11] and Camellia [5], is that it is parallelizable for up to n rounds. In hardware implementations, the benefits translate to speeding up encryption by up to n times while consuming similar area and significantly less power. At the same time n-cell GF-NLFSR structures offer similar proofs of security against differential cryptanalysis as conventional n-cell Feistel structures. We also ensure that parallelized versions of Camellia and SMS4 are resistant against other block cipher attacks such as linear, boomerang, integral, impossible differential, higher order differential, interpolation, slide, XSL and related-key differential attacks.
منابع مشابه
Parallelizing the Camellia and SMS4 Block Ciphers
The n-cell GF-NLFSR (Generalized Feistel-NonLinear Feedback Shift Register) structure [8] is a generalized unbalanced Feistel network that can be considered as a generalization of the outer function FO of the KASUMI block cipher. An advantage of this cipher over other n-cell generalized Feistel networks, e.g. SMS4 [11] and Camellia [5], is that it is parallelizable for up to n rounds. In hardwa...
متن کاملParallelisable variants of Camellia and SMS4 block cipher: p-Camellia and p-SMS4
We propose two parallelisable variants of Camellia and SMS4 block ciphers based on the n-cell GF-NLFSR. The n-cell generalised Feistel-non-linear feedback shift register (GF-NLFSR) structure (Choy et al., 2009a) is a generalised unbalanced Feistel network that can be considered as a generalisation of the outer function FO of the KASUMI block cipher. An advantage of this cipher over other n-cell...
متن کاملImprovements for Finding Impossible Differentials of Block Cipher Structures
In this paper we improve Wu and Wang’s method for finding impossible differentials of block cipher structures. This improvement is more general than Wu and Wang’s method that it can find more impossible differentials with less time. We apply it on GenCAST256, Misty, Gen-Skipjack, Four-Cell, Gen-MARS, SMS4, MIBS, Camellia*, LBlock, E2 and SNAKE block ciphers. All impossible differentials discove...
متن کاملImpossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)
Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...
متن کاملMultiple Linear Cryptanalysis of Reduced-Round SMS4 Block Cipher
SMS4 is a 32-round unbalanced Feistel block cipher with its block size and key size being 128 bits. As a fundamental block cipher used in the WAPI standard, the Chinese national standard for WLAN, it has been widely implemented in Chinese WLAN industry. In this paper, we present a modified branch-and-bound algorithm which can be used for searching multiple linear characteristics for SMS4-like u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010